FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Electrification of transport and smart energy systems

Prof.dr.sc. Neven Duić

Power Engineering and Energy Management Chair Department of Energy, Power and Environmental Engineering Faculty of Mechanical Engineering and Naval Architecture **University of Zagreb, Croatia**

EiC JSDEWES, Editor ECM, Subject Editor Energy IC SDEWES President

DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Zagreb, 27.6.2022

INTRODUCTION to AaCTA

Federal Ministry for Economic Affairs and Climate Action	0	European Climate Initiative EUKI
oasis of a decision German Bundestag		

Energy transition and transport?

- Global warming due to anthropogenic CO₂
- Challenging energy transition requires integrated energy systems
- Synergies are necessary
- Fit for 55

Illustrative emissions pathways to achieve a net-zero target in the EU

Supported by:

on the basis of a by the German I

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Transport electrification has started

Global light vehicles sales in 2021

- 6.7 mln EV
- 81 mln total
- 8.3% global sales
- 108% EV sales growth
- 6% cars sales growth
 EU: 19% EV
 HR: 3% EV

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Demand response – power-to-transport

Electromobility

- Only personal cars and short distance utility vehicles, 6.7 mln PHEV and BEV sold in 2021
- Fast charging 70 kW huge problem if left uncontrolled, ex AT, 4 mln cars arrives home, plugs in – 280 GW (14 GW installed cap)
- Smart charging market based, smoothing the demand

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Charging EV

Fast chargers on highways Slow but smart chargers at each parking place

DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Wind is actually baseload with excess

European wind energy generation in 2021

FACULTY OF MECHANICAL ENGINEERING AND NAVAL ARCHITECTURE DEPARTMENT OF ENERGY, POWER AND ENVIRONMENTAL ENGINEERING

Demand response – power-to-X

- 20th century energy systems: supply follows demand
- 21st century energy systems: demand follows supply -> smart energy systems

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Demand response technology and a balancing technology to support the power system

• New markets are being developed

INTRODUCTION to AaCTA

- Smart charging
- Vehicle-to-grid

INTRODUCTION to AaCTA

Electrification of transport and its interaction with the power sector is a hot topic

intermittent renewable energy sources // Renewable & sustainable energy reviews 99, 109-124 Table 4

Dorotić, Hrvoje; Doračić, Borna; Dobravec, Viktorija; Pukšec, Tomislav; Krajačić, Goran; Duić,

Neven, Integration of transport and energy sectors in island communities with 100%

Fig. 3. Results of different scenarios compared to the 5% CEEP limit.

Table 4Pfeifer, Antun ; Krajačić, Goran ; Ljubas, Davor ; Duić, Neven, Increasing the integration of solar
photovoltaics in energy mix on the road to low emissions energy system – Economic and
environmental implications // Renewable energy, 143, 1310-1317 (2019

				57			•			
Year 2030	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
Minimum CHP [MW]	0	0	150	0	0	0	0	0	0	0
Minimum PP [MW]	0	200	200	200	200	200	200	200	200	0
PTH Storage [GWh]	2.25	2.25	2.25	4.5	10	2.25	2.25	2.25	2.25	10
HP COP	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
HP [MW]	90	90	90	180	180	180	180	100	100	100
EV consumption [TWh]	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.72	0.72
EV battery size [kWh]	15	15	15	15	15	15	20	20	20	20

In combination with other technologies, it provides flexibility for variable generation

Pfeifer, Antun; Dobravec, Viktorija; Pavlinek, Luka; Krajačić, Goran; Duić, Neven, <u>Integration of renewable</u> <u>energy and demand response technologies in interconnected energy systems</u> // Energy **161**, 447-455 (2018)

In insular systems, it can provide

complete supply on its own in

critical hours

Wind and solar are actually baseload with excess, which we can use for heating, driving and hydrogen for industry

Road transport

Based on slides by Marco Mazzotti, ETH Zurich, presented in Brussels – Feb 20th, 2018

SB